陕西省镁业集团电子商务有限公司logo
设为首页 | 加入收藏 | rss订阅

网上培训

易洲专栏

您的位置:首页 > 网上培训 > 行业知识

镁合金成形技术简介与分析

2.2 超塑性变形

超塑性是指晶体材料在拉伸时表现出大的应变。已有的研究结果表明,合金在一定条件下不但具有很高的塑性,而且甚至出现明显的超塑性。当晶粒细化到一定程度(约10—6m),合金可获得相对的超塑性。通常超塑性现象主要发生在高温(约等于0.7Tm,Tm为材料的熔点),应变速率相对较低,工业生产中受到限制。Langdon提出了超塑性变形的两个必要条件:①局部缩颈受到限制;②空洞内部相互连接受到抑制。目前,采用高应变速率超塑性成形和低温超塑性成形获得细小晶粒。其中,等通道角挤压技术是低温超塑性的一种方法,在200 ℃温度下可使AZ91合金延伸率达到675%。

3 半固态成形

半固态成形技术,是在金属凝固过程中,将结晶过程控制在固—液两相共存温度,并通过剧烈搅拌破碎枝晶组织,从而获得一种金属母液中悬浮一定固相成分的固—液?昆合浆料,再采用压铸、模锻等成形加工工艺进行的金属成形技术。半固态加工,是一种新型、先进的工艺方法,与传统液态铸造成形相比,具有成形温度低(合金可降低100℃左右),延长模具的寿命,改善生产条件和环境,细化晶粒,减少气孔、缩孔,提高组织致密性,提高铸件质量等优点,被认为是21世纪最具有发展前景的精密成形技术之一。根据工艺流程的不同,半固态成形通常分为流变铸(Rheocasting)和触变铸造(Thixocasting)两类:流变铸造是对冷却过程中的金属液进行搅动,将形成的固相枝晶破碎,形成一定固相分数的半固态金属浆料,然后将浆料注入压铸机或挤压机内成形(俗称“一步法”);而触变铸造是先由连铸等方法制得具有半固态金属组织的锭坯,然后切成所需长度,用二次加热装置再加热到半固态状态,最后移送至压铸机等再压铸或挤压成形(俗称“两步法”)。

半固态成形过程一般包括非枝晶组织的制备、二次加热和半固态成形3个步骤。制备非枝晶组织的坯料是半固态成形的前提,机械搅拌法是最早采用的方法,其设备构造简单,但工艺参数不易控制,很难保证产品质量的一致性。目前工业化生产中,应用最为广泛的方法有:电磁搅拌法、应变诱发熔化激活法(SIMA)和半固态等温热处理法(SSIT)以及化学晶粒细化法等。

3.1 电磁搅拌法

利用电磁感应在凝固的金属液中产生感应电流,感应电流在外加磁场的作用下促使金属固液浆料激烈地搅动,使传统的枝晶组织转变为非枝晶组织。一般用于生产直径不大于150 mm的棒坯。该方法在很大程度上克服了机械搅拌的缺点,可实现连铸,生产效率高,是目前工业化生产中应用最为广泛的一种方法。

3.2 应变诱发熔化激活法(SIMA)

预先连续铸造出晶粒细小的合金锭,再将合金铸锭进行足够的预变形,然后加热到半固态。在加热过程中,先发生预变形,然后部分熔化,使初生相转变成颗粒状,形成半固态合金材料。此方法对制备较高熔点的非枝晶组织合金具有独特的优越性,但只能制备直径小于60mm的坯料。

3.3 半固态等温热处理法

在合金熔融状态时加人变质元素,进行常规铸造,然后把锭坯重新加热到固液两相区进行保温处理(半固态等温热处理),最终获得具有触变性的非枝晶组织。主要工艺参数有添加微量元素的种类、加入量、半固态等温温度和保温时间等。

3.4 化学晶粒细化法

是近几年开发的新方法。通过添加晶粒细化剂或变质剂,增加外来晶粒数量或改变结晶方式来细化晶粒组织,使生产的锭坯适合于半固态铸造。据报道,挪威NorskHydro公司已经通过化学晶粒细化法与特殊的凝固条件结合制备了合金AZ91的细晶粒铸锭。

半固态触变成形之前,先要进行局部重熔(二次加热)。应根据加工零件大小精确分割具有非枝晶组织的坯料,然后将其加热到半固态温度后再进行成形加工。其目的一是为了获得不同工艺所需的固相体积分数,二是将有些工艺(电磁搅拌,化学晶粒细化法等)获得的细小枝晶碎片逐渐长大,并转化成球状结构,从而为触变成形创造有利条件。

流变成形与触变成形技术的区别在于前者是由液态在冷却过程中形成半固态状态,再成形的过程;后者则是有固态加热至半固态状态,然后进入成形工艺的过程。与流变铸造相比,触变铸造易实现坯料的加热和输送自动化,是目前半固态铸造的主要工艺方法。但是,无论是流变成形还是触变成形,工艺流程较长,铸件工艺成本相对较高。

4 其它成形方法

合金材料的其他制备方法还有挤压铸造法,粉末冶金法,喷射沉积法,真空浸渍法以及目前仅用于Mg—Li基复合材料的薄膜冶金法等。

5 存在的问题及前景展望

近年来,合金应用逐年提高,但一些尚待解决的问题使得合金的广泛生产受到限制。表现在以下几个方面:的化学活性很强,在空气中易氧化,在高温情况下可以发生燃烧,因此熔炼过程中须采用复杂的保护措施。工业中主要采用熔剂保护法和气体保护法。熔剂保护法最大缺点是反应过程中产生的有害气体严重污染环境并损害人体健康;而气体保护法中经常采用且具有良好保护效果的SP6气体,但其温室效应是CO:的24 900倍12”;常温下成形性差,目前工业上应用的多为合金压铸件,限制了其它成形方法的运用;合金没有像铝合金那样大规模使用的另一个原因是其耐蚀性差,采用表面防护又增加了其生产成本。

鉴于以上问题,合金研究集中在以下几个方面:无污染熔炼技术。研究表明,合金合金化阻燃具有很好的效果;开发和改善合金的成形工艺;进一步研究合金的表面处理技术,改善其外观和耐蚀性以及高强韧合金和耐热合金的研究。

总之,合金作为一种新型的工程材料,满足了人们对能源和环境保护的要求,正受到世界各国政府和研究机构的高度重视。我国也将“合金开发应用及产业化”作为科技部“十五”国家科技攻关重大项目之一。合金的研制、开发和应用符合我国的产业发展规划,可以充分发挥我国的资源优势,加强合金应用开发,将资源优势转化为经济优势,促进国民经济发展,相信随着科学技术的进一步发展,合金各种性能将会得到进一步完善,它也必将为人类社会的发展做出更大的贡献。


 

关于我们  |  诚征英才  |  免责条款  |  法律顾问  |  联系方式  |  网站地图  |  手机版
陕镁集团_陕西省镁金属电子商务中心版权所有
陕ICP备16014093号-1

Copyright @ 2011-2016 Shaanxi e-Commerce Center of Magnesium All Rights Reserved.